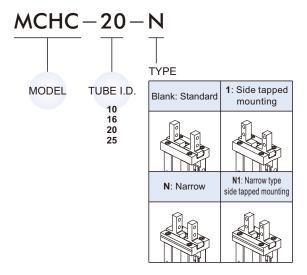
MCHC series

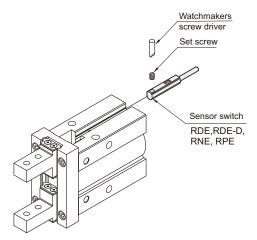

PARALLEL GRIPPER

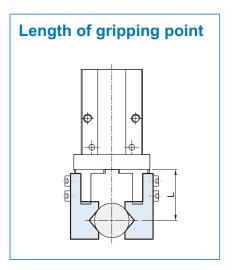
Order example

Features

- Integral linear guide used for high rigidity and high precision.
- The material of finger is martensitic stainless steel.
- Grooves on the body for sensor switch to be inserted into.
- Standard with magnet.

Specification

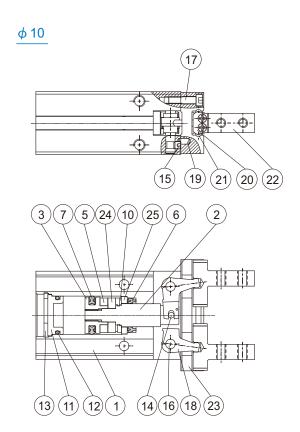

Model	MCHC			
Acting type	Double acting			
Tube I.D. (mm)	10	16, 20, 25		
Port size	M3×0.5	M5×0.8		
Medium	Air			
Operating pressure range	0.2~0.7 MPa	0.1~0.7 MPa		
Ambient temperature	-10~+60°C (No freezing) ± 0.01 mm 180 cycles / min Not required			
Repeatability				
Max. frequency				
Lubricator				
Sensor switch (%)	RDE, RDE-D			
Weight (g)	55 125, 250, 460			

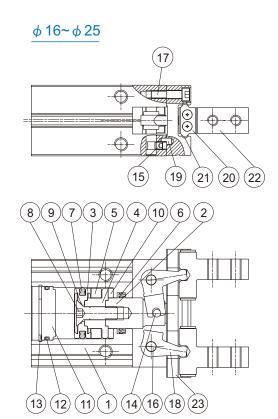

Gripping force

T	Gripping	Opening closing	
Tube I.D. (mm)	Girpping force per finge	stroke (Both sides)	
()	Exterinal	Internal	(mm)
10	11 (1.1)	17 (1.7)	4
16	34 (3.5)	45 (4.6)	6
20	42 (4.3)	66 (6.7)	10
25	65 (6.6)	104 (10.6)	14

Note. Values based on pressure of 0.5 MPa, gripping point L=20mm, at center of stroke.

Installation of sensor switch





PARALLEL GRIPPER

Material

No.	Tube I.D. Part name	10	16	20	25	Q'y	Repair kits (inclusion)
1	Body	Aluminum alloy			loy	1	
2	Piston rod	St	ainle	ss ste	eel	1	
3	Piston	Alι	ıminı	ım al	loy	1	
4	Piston R	— Aluminum alloy			alloy	1	
5	Magnet ring	Ма	gnet	mate	rial	1	
6	Rod packing		NBR			1	•
7	Piston packing		NBR		1	•	
8	Screw		- Stainless steel		1		
9	Gasket	_	— NBR		1	•	
10	Cushion pad		PU			1	•
11	Head cover	Alι	Aluminum alloy		1		
12	Cover ring		NBR		1	•	
13	Stop ring	Stainless steel			eel	1	
14	Spindle river	Carbon steel			el	1	
15	Screw	Carbon steel			el	4	
16	Grip rivet	Carbon steel			el	2	
17	Bolt	Stainless steel			eel	4	

No.	Tube I.D. Part name	10	16	20	25	Q'y	Repair kits (inclusion)
18	Lever	Stainless steel			eel	2	
19	Pin	С	Carbon steel			2	
20	Roller stopper	Stainless steel			eel	4	
21	Steel balls	Stainless steel			eel	24	
22	Finger	St	Stainless steel			2	
23	Guide	Stainless steel			eel	1	
24	Snap ring	*				1	
25	Stop ring	*		_		1	

Stainless steel

Order example of repair kits

Tube I.D.	Repair kits
φ10	PS-MCHC-10
φ16	PS-MCHC-16
φ20	PS-MCHC-20
φ25	PS-MCHC-25

μF

mg

PARALLEL GRIPPER

Model selection

Please select your model according to the weight of workpiece

- Although conditions differ according to the work piece shape and the coefficient of friction between the attachments and the workpiece, select a model that can provide a gripping force of 10 to 20 times the workpiece weight, or more.
- If high acceleration, deceleration or impact forces are encountered during motion, a further margin of safety should be considered.

When gripping a workpiece as in the figure as shown above:

F: Gripping force (N)

 μ : Coefficient of friction between the attachments and the workpiece

m: Workpiece mass (kg)

g: Gravitational acceleration (=9.8m/s²)

mg: Workpiece weight (N)

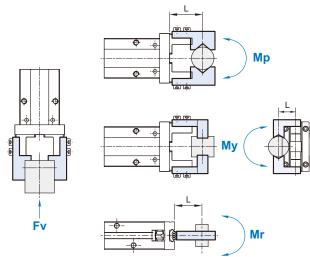
the conditions under which the workpiece will not drop are,

$$2 \times \mu F > mg$$
Number of fingers

Therefore.

$$F > \frac{mg}{2 \times \mu}$$

With"a"representing the extra margin, "F" is determined by the following formula:


$$F = \frac{mg}{2 \times u} \times a$$

The "10 to 20 times or more of the workpiece weight" is calculated with a safety margin of a=4, which allows for impacts that occur during normal transportation, etc o

μ=0.2	μ=0.1
$F = \frac{mg}{2 \times 0.2} \times 4$ $= 10 \times mg$	$F = \frac{mg}{2 \times 0.1} \times 4$ $= 20 \times mg$
↓	↓
10×workpiece weight	20×workpiece weight

- %1. Even in cases where the coefficient of friction is greater than μ =0.2, for reasons of safety, please select a gripping force which is at least 10 to 20 times greater than the workpiece weight.
- ※2. If high acceleration, deceleration or impact forces are encountered during motion, a further margin of safety should be considered.

Confirmation of external force on fingers

L: distance to the point at which the load is applied (mm)

	Tube I.D. (mm)	Allowable vertical load Fv(N)	Maximum allowable moment				
			Pitch moment Mp(N-m)	Yaw moment My(N-m)	Roll moment Mr(N-m)		
	10	58	0.26	0.26	0.53		
	16	98	0.68	0.68	1.36		
	20	147	1.32	1.32	2.65		
	25	255	1.94	1.94	3.88		

* Values for load and moment in the table indicate static values.

Allowable load calculation

$$\underset{load}{^{Allowable}}F(N) = \frac{M(maximum \, allowable \, moment)(N \, \cdot \, m)}{L(m)}$$

When a static load of f=20N is operating, which applies pitch moment to point L=25mm from the MCHC-16 guide.

Allowable load
$$F(N) = \frac{0.68(N \cdot m)}{25 \times 10^{3}(m)}$$

= 27.2(N)

Load f=20(N) < 27.2(N), So can be used.

Model selection example

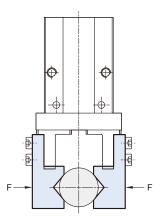
In the motion process did not produce high acceleration, deceleration or impact forces,

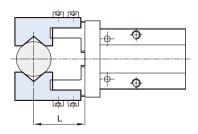
Workpiece mass: 300g, Gripping method: External gripping, Operating pressure : 0.5 MPa , Coefficient of friction (μ): 0.1, Holding position: 20mm (no overhang)

1. The conditions under which the workpiece will not drop are,

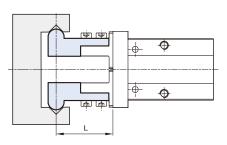
$$F = \frac{0.3}{2 \times 0.1} \times 4 = 6 \text{ (kgf)} = 60(\text{N})$$

2. From Effective Gripping Force Fig, Operating pressure: 0.5 MPa; Holding position: 20mm Effective gripping force is greater than 60(N) So selected MCHC-25 grippers.

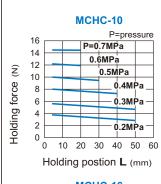

PARALLEL GRIPPER


Effective gripping force (Double acting)

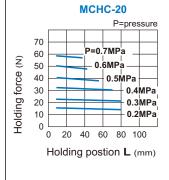
Indication of effective force.

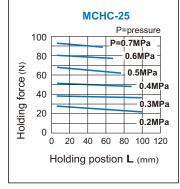

The effective gripping force shown in the graphs to the right is expressed as F, which is the thrust of one finger, when both fingers and attachments are in full contact with the workpiece as shown in the figure below.

1N=0.102 kgf 1MPa=10.2 kgf/cm²

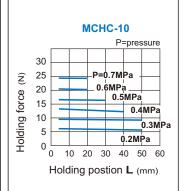


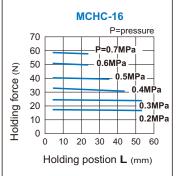

External grip

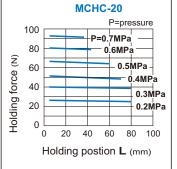


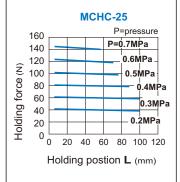

Internal grip

External gripping force

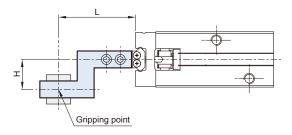




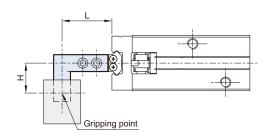




Internal gripping force

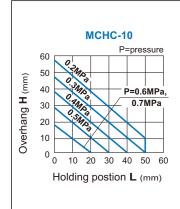

MCHC Capacity

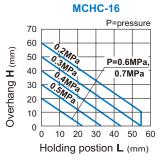
PARALLEL GRIPPER

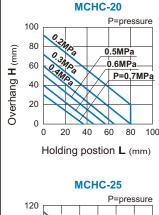


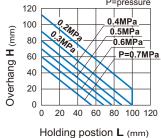
Confirmation of gripping point

- The air gripper should be operated so that the workpiece gripping point "L" and the amount of overhang "H" stay within the range shown for each operating pressure given in the graphs to the right.
- If the workpiece gripping point goes beyond the range limits, this will have an adverse effect on the life the air gripper.

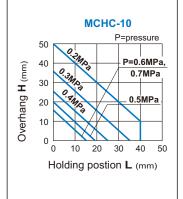


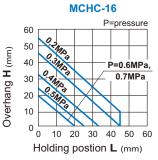

External grip

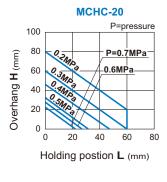


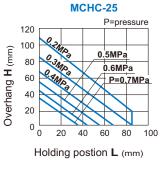

Internal grip

External gripping force

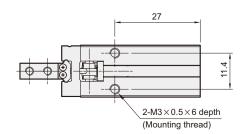


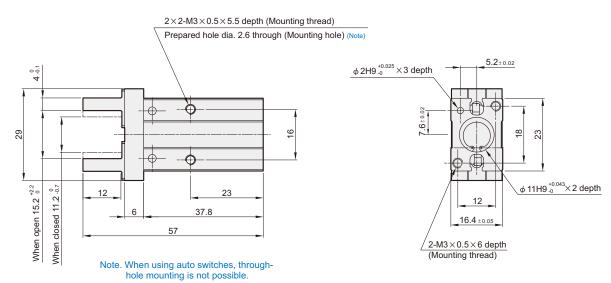


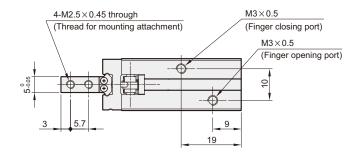




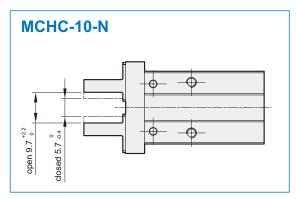
Internal gripping force

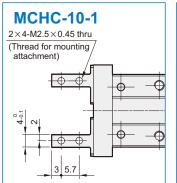


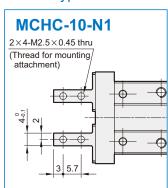




PARALLEL GRIPPER

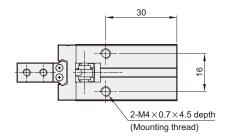


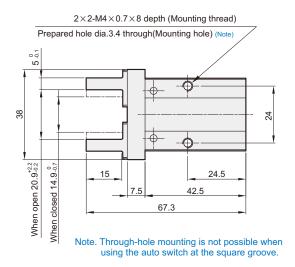


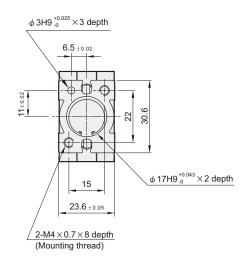

Finger position / Narrow type

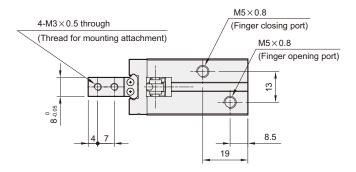
Side tapped mounting

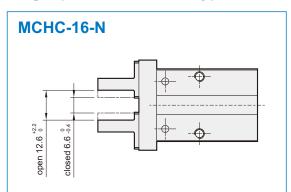
Standard

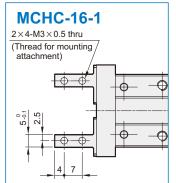


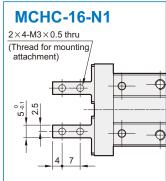



MCHC Dimensions ϕ 16


PARALLEL GRIPPER

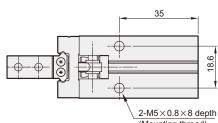


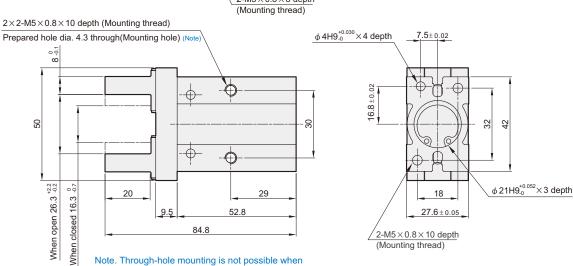



Finger position / Narrow type

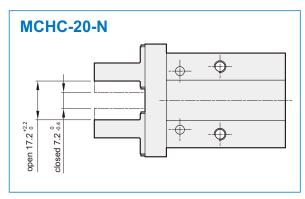
Side tapped mounting

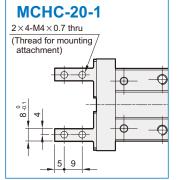
Standard

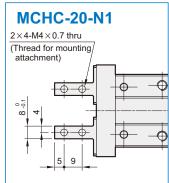




MCHC Dimensions ϕ 20

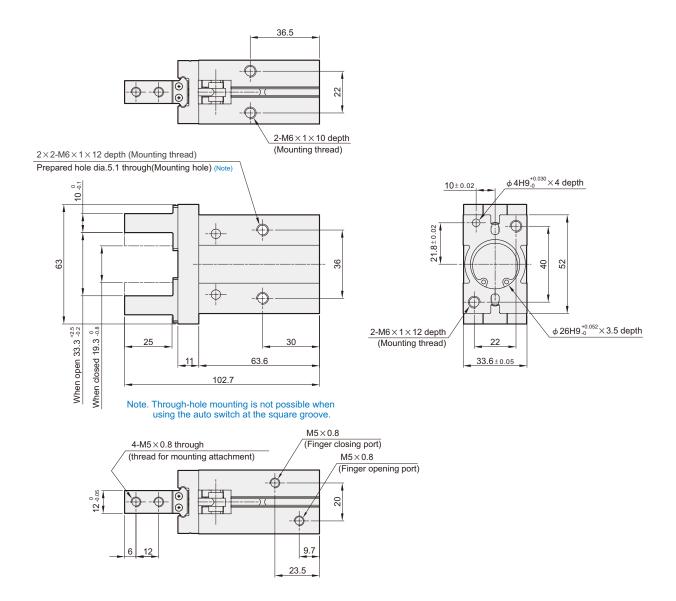



Note. Through-hole mounting is not possible when using the auto switch at the square groove.

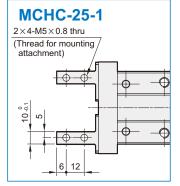

Finger position / Narrow type

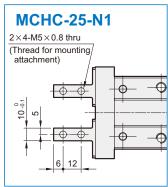
Side tappedmounting

Standard



MCHC Dimensions \$\phi\$ 25




Finger position / Narrow type

MCHC-25-N Solve of the solve o

Side tapped mounting

Standard

